Biological underpinnings of Frost's mechanostat thresholds: the important role of osteocytes.
نویسندگان
چکیده
Harold Frost first proposed the existence of several mechanical thresholds in bone, two of which determine whether bone is added to, or lost from, the skeleton. Recent evidence from bone biology helps elucidate the role of osteocytes in determining these mechanical thresholds. Specifically, when mechanical stimuli fall below the resorption threshold, osteocyte apoptosis occurs, followed by bone resorption. Conversely, mechanical loading maintains osteocytes viability, and consequently, no bone is lost. With a greater than customary mechanical stimulus, osteocytes perturbation from pulsatile fluid flow results in release of anabolic factors and subsequent bone formation. Osteocytes also play a pivotal role in bone remodeling in response to alterations in the mechanical environment. In particular, osteocyte apoptosis results in bone turnover in disuse as well as in response to greater than customary mechanical stimuli due to microdamage accumulation. Given the important role of osteocytes in bone modeling and remodeling, these cells provide an ideal target for both drug therapies and exercise to prevent bone fragility.
منابع مشابه
Modeling and remodeling in a developing artiodactyl calcaneus: a model for evaluating Frost's Mechanostat hypothesis and its corollaries.
The artiodactyl (mule deer) calcaneus was examined for structural and material features that represent regional differences in cortical bone modeling and remodeling activities. Cortical thickness, resorption and formation surfaces, mineral content (percent ash), and microstructure were quantified between and within skeletally immature and mature bones. These features were examined to see if the...
متن کاملThe regulation of bone development as a biological system.
A large number of molecular, cellular, and epidemiologic factors have been implicated in the regulation of bone development. A major unsolved problem is how to integrate these disparate findings into a concept that explains the development of bone as an organ. Often, events at the organ level are simply presented as the cumulative effect of all factors that individually are known to influence b...
متن کاملThe past, present, and future of bone morphometry: its contribution to an improved understanding of bone biology.
It was not until the 1950s that a better paradigm for bone biology evolved, which led to the birth of bone histomorphometry. Two clinicians, Harold Frost (1958-1964) and Lent Johnson (1964), were responsible for the paradigm stating that the primary function of bone is mechanical load bearing with subsidiary function to participate in plasma calcium homeostasis to support hematopoesis. Dynamic ...
متن کاملTowards a cell-based mechanostat theory of bone: the need to account for osteocyte desensitisation and osteocyte replacement.
Bone׳s mechanostat theory describes the adaptation of bone tissues to their mechanical environment. Many experiments have investigated and observed such structural adaptation. However, there is still much uncertainty about how to define the reference mechanical state at which bone structure is adapted and stable. Clinical and experimental observations show that this reference state varies both ...
متن کاملMaterial matters: a mechanostat-based perspective on bone development in osteogenesis imperfecta and hypophosphatemic rickets.
This perspective paper presents a hypothesis that links abnormalities of bone material with densitometric findings in two congenital metabolic bone disorders, osteogenesis imperfecta type I (OI) and X-linked hypophosphatemic rickets (XLH). Analyses of iliac bone samples from OI patients have shown that material bone density is elevated and that the bone material is abnormally stiff in this diso...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of musculoskeletal & neuronal interactions
دوره 10 2 شماره
صفحات -
تاریخ انتشار 2010